

TRIBUTARIES WORKSHOP PLATTEKILL AND SAWKILL CREEKS

Plattekill Creek in West Saugerties

Sawkill Creek in Woodstock

PRESENTED BY: Jim MacBroom, PE & Mark Carabetta SPONSORED BY: The Town of Saugerties FUNDED BY: The New York Governor's Office of Storm Recovery | January 31, 2018

MEET YOUR PRESENTERS

JIM MACBROOM, PE Water Resource Engineer MARK CARABETTA Environmental Scientist

TONIGHT'S WORKSHOP TOPICS

- Watersheds
- Geology
- Fluvial Geomorphology
- Channel Slope
- Channel Characterization
- Sediment Transport

- Hydrology & Hydraulics
- Channel Adjustments
- Flooding and FEMA Flood Maps
- River & Watershed Planning
- Potential Funding Sources
- Discussion

WATERSHED

(also called drainage basin or catchment area)

A watershed is the area of land where all of the water that falls into it and drains off goes to a common outlet.

A watershed can be as small as a footprint or large enough to encompass all the land that drains water into a river.

Watersheds come in many shapes

WATERSHED TOWNS

WATERSHED GEOLOGY

PLATTEKILL CREEK

- Flows a distance of 17 miles
- Headwaters at ~3,360 feet above sea level on Indian Head Mountain
- Outlets to Esopus Creek at ~120 feet above sea level
- Vertical drop of ~3,240 feet
- Average channel slope of 3.6 percent

FALLS, WEST SAUGERTIES

MOUNT MARION

(Photos: M. Carabetta)

A *longitudinal profile* of a river depicts the change in elevation of the channel from its headwaters to its mouth, thereby showing the rate of change of slope (or gradient) with distance downstream (Fryirs and Brierley, 2013)

DIRECTION OF FLOW

STREAM DISCHARGE

CHANNEL WIDTH & DEPTH

more narrow & shallow

wider & deeper

BED MATERIAL TEXTURE

VALLEY CONFINEMENT

- more confined
- less accommodation space
- few floodplains

- less confined
- more accommodation space
- well developed floodplains

Upper Catskill Creek near Franklinton Vlaie

Sawkill Creek at Thorn Preserve

VOLUME OF STORED ALLUVIUM

GEOMORPHIC TRANSITIONS

GENERALIZED CHANNEL CHARACTERIZATION

SAWKILL CREEK

- Flows a distance of 19.5 miles
- Headwaters at ~3,570 feet above sea level on Indian Head Mountain
- Outlets to Esopus Creek at ~140 feet above sea level
- Vertical drop of ~3,240 feet
- Average channel slope of 3.3 percent

Keefe Hollow Road, Woodstock

Yeery Hill Road, Woodstock

Thorn Preserve, Woodstock

OUTLET OF SAWKILL AT ESOPUS CREEK

SAWKILL CREEK OX-BOW LAKE

DIRECTION OF FLOW

GENERALIZED CHANNEL CHARACTERIZATION

<u>Imbrication</u> is the stacking or overlapping of individual grains in the direction of the current, resulting in a tightly-packed channel bed.

Stream Flow ____

EQUILIBRIUM

"Where the stream bed slope has adjusted to prevailing water and sediment loads such that the channel neither aggrades nor degrades, and slope remains constant thro time."

Gilbert,1877

"One in which, over a period of years, slope is delicately adjusted to provide, with prevailing discharge and channel characteristics, just the velocity required for transportation of the load supplied by the drainage basin."

Copyright © A.N. Strahler

Mackin, 1948

Source: Lane, 1955; Rosgen and Silvey, 1996

NON-ALLUVIAL CHANNELS

- Glacial Till
- Bedrock
- Artificial Linings
- Fixed Alignment
- No Floodplain
- Rigid Boundaries
- Many Degrading / Incised Channels

Moyer Creek, Frankfort NY

Bellinger Brook, Herkimer NY

ALLUVIAL CHANNELS

- Located In Or On Sediment Deposits
- Sedimentary Floodplain
- Modern Sediment Loads
- Mobile Bed
- Prone To Varying Alignment

CHANNELS OUT OF EQUILIBRIUM

- Degrading
- Aggrading
- Braided
- Alluvial Fans
- Deltas
- Modified Hydrology
- Modified
 Sediment
 Loads

HYDROLOGY, HYDRAULICS, SEDIMENT

- HYDROLOGY-river flow rates, hydrographs, peak flood discharges, low flow rates
- HYDRAULICS-how water moves; surface elevations, depths, flow velocities
- SEDIMENT-Soils eroded and transported by water

RIVER STRESSORS

- Natural- (climate, uplift, erosion)
- Human Direct (dredge, dike, divert, discharges, drainage)
- Human Indirect (watershed changes)

PREDICTED RUNOFF CHANGES

Figure 4.10 Median changes in runoff interpolated to USGS water resources regions from Milly et al. (2005) from 24 pairs of GCM simulations for 2041-2060 relative to 1901-1970. Percentages are fraction of 24 runs for which differences had same sign as the 24-run median. Results replotted from Milly et al. (2005) by Dr. P.C.D. Milly, USGS.

PREDICTED RIVER TRENDS

- Higher Annual Runoff
- Increased Variation
- Wetter Winter, Spring
- Drier Summer, Fall
- More Thunder Storms
- Increased Flood Risks

≊USGS

≊USGS

CHANNEL EVOLUTION MODEL

Simon, 1989

RIVER VULNERABILITY ANALYSIS

- River Classification
- Channel and Valley Confinement
- Potential Stresses
- Threshold Conditions
- Susceptibility to Stress
- Potential Attribute Changes
- Potential River Types
- Temporal Aspects

RIVER RESPONSES

STEEP SLOPES	MEDIUM SLOPES	LOW SLOPES
Channel Deepening	Deepens or Widens	Shallows
High Velocity	Modified Sinuosity	Overbank Floods
Bank Failures	Floodplain Scour	Avulsions
Coarser Bed	Log Jams	Wetland Damage

SEDIMENT PROCESS

- Precipitation
- Runoff
- Soil Erosion
- Particle Entrainment
- Sediment Transport
- Deposition
- Consolidation

SEDIMENT SOURCES

- Natural Upland Soil Erosion
- Construction Activity
- Road Sand
- Agriculture
- Trash And Litter
- Upstream Channel Erosion
- Channel Sediment Storage

LAND USE AND SEDIMENT YIELDS

EXPLANATION

LAND USE SHOWN ON MAP	NITRATE 1980–89		TOTAL PHOSPHORUS 1982–89		SUSPENDED SEDIMENT 1980–89	
	Yield, in tons per square mile per year	Percentage change per year	Yield, in tons per square mile per year	Percentage change per year	Yield, in tons per square mile per year	Percentage change per year
AGRICULTURE Wheat	0.032	*	0.010	-2.8	10	+0.8
Corn and soybeans	0.932	*	0.163	-2.1	100	-1.0
Mixed	0.304	*	0.066	-1.6	79	-0.7
URBAN	0.547	+0.2	0.119	-0.6	23	-0.6
FOREST	0.255	*	0.063	-0.8	31	-0.3
RANGE	0.031	*	0.017	-1.9	33	-0.2

* Between -0.1 and +0.1.

SEDIMENT LOADS

• Total Load =

Bed Material Load & Wash Load

- Bed Material Load = Bed Load & Suspended Bed Material
- Wash Load =

Permanently Suspended Fines

Floatation

HIGH SEDIMENT CONCENTRATION

LOW SEDIMENT CONCENTRATIONS

SEDIMENT DEPOSITS

RIVER ADJUSTMENTS

m – 'lateral migration' Initiation of alternating bank erosion in straightened

channels or erosion of only sharpest bends

e - 'enlarging' Initiation of continuous erosion, often at channel toe

C-'COMPOUND' Aggradation of channel bed with erosion of channel banks

R - 'RECOVERING' Development of a sinuous channel within straightened channels, including selective erosion of outer banks

U - 'UNDERCUTTING' Continuous erosion and migration of full width channel, coarse inner bank deposits

Figure 8.4 Example classifications of river channel adjustment occurring in river channels subject to human disturbance processes and river engineering A Brice, 1981; B Brookes, 1987a; C Downs, 1992

MEANDER MIGRATION

ESOPUS CREEK MEANDERS

SEDIMENT DEPOSITS IN RESERVOIRS

SEDIMENT STORAGE CHARACTERISTICS

TYPE	NORMAL STAGE	STAGE RANGE	RESIDENCE TIME	TRAP EFFICIENCY
Lake	full	low	long	high
Run of river	full	low	short	low
Water supply	high	moderate	med-long	high
hydropower	high	minor	variable	medium
Flood control	low	large	short	low

SEDIMENT DELTA

FEMA FLOOD MAPS

FEMA Mapping using Detailed Engineering Methods

Special Flood Hazard Area, Floodway & Flood Fringe

FEMA Mapping using Approximate Engineering Methods

PLANNING

WATERSHED PLANNING PROCESS

WATERSHED PLANNING PROCESS

- Identify & Involve Stakeholders
- Explore Goals & Objectives
- Collect Existing Data
- Document Basin & Corridor Conditions
- Identify Large Scale Problems & Issues
- Develop Future Vision & Specific Objectives
- Assess Site Specific Problems
- Evaluate Alternatives & Strategies
- Prepare Implementation Plan

WATERSHED PLANNING PROCESS

May 2007

Funded through Hudson River Estuary Program Grant to Town of Woodstock

POTENTIAL FUNDING SOURCES

HUDSON RIVER ESTUARY PROGRAM:

- Tributary Restoration and Resiliency
- Local Stewardship Planning
- River Access and River Education

Sign up to receive Hudson RiverNet: Hudson River Estuary Newsletter

CONTACT:

Susan Pepe Grants Coordinator NYS DEC / NEIWPCC Hudson River Estuary Program susan.pepe@dec.ny.gov 518.402.8270

A Program of the New York State Department of Environmental Conservation

HUDSON RIVER ESTUARY PROGRAM

• Trees for Tribs

<u>CONTACT</u>: NYSDEC, Hudson River Estuary Program Beth Roessler, Riparian Buffer Coordinator Email: <u>HudsonEstuaryTFT@dec.ny.gov</u> Web Page: <u>http://www.dec.ny.gov/lands/43668.html</u>

A Program of the New York State Department of Environmental Conservation

QUESTIONS, COMMENTS, THOUGHTS?